Frequency Tripling of Beam Noise*

J.M. Auerbach, C. Barker, P.J. Wegner and D. Eimerl

Lawrence Livermore National Laboratory P.O. Box 808, L-490 Livermore, CA 94550 USA

(510) 422-5328/FAX (510) 423-6506

[Abstract submitted to 2nd Annual International Conference on Solid-State Lasers for Application to Inertial Confinement Fusion (ICF), Paris, France (1996)]

Abstract

The characteristics of the 3ω focal spot are determined by the properties of the 1ω beam and the frequency tripling process. The size of the 3ω focal spot depends on the spectrum of spatial noise in the 1ω beam. A perturbation theory for ripple transfer in frequency tripling is used to predict the characteristics of the 3ω focal spot. The theory predicts that 1ω phase noise grows 9X in power in the tripling process. This can cause a significant reduction in 3ω energy delivered to the target. Results from Beamlet 3ω focal spot characterization experiments are also presented.

^{*}Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.